
Reprinted from the

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

udev – A Userspace Implementation of devfs

Greg Kroah-Hartman∗

IBM Corp.
Linux Technology Center

greg@kroah.com, gregkh@us.ibm.com

Abstract

Starting with the 2.5 kernel, all physical
and virtual devices in a system are visible
to userspace in a hierarchal fashion through
sysfs . /sbin/hotplug provides a noti-
fication to userspace when any device is added
or removed from the system. Using these two
features, a userspace implementation of a dy-
namic/dev is now possible that can provide a
very flexible device naming policy.

This paper will discussudev , a program that
replaces the functionality ofdevfs (only pro-
viding /dev entries for devices that are in the
system at any moment in time), and allows for
features that were previously not able to be
done throughdevfs alone, such as:

• Persistent naming for devices when they
move around the device tree.

• Notification of external systems of device
changes.

• A flexible device naming scheme.

• Allow the kernel to use dynamic major
and minor numbers

• Move all naming policy out of the kernel.

∗This work represents the view of the author and
does not necessarily represent the view of IBM.

This paper will describe why such a userspace
program is superior to a kernel baseddevfs ,
and detail the design decisions that went into
its creation. The paper will also describe how
udev works, how to write plugins that ex-
tend the functionality of it (different naming
schemes, etc.), and different trade offs that
were made in order to provide a working sys-
tem.

1 Introduction

The /dev directory on a Linux machine is
where all of the device files for the system
should be located.[2] A device file is how a
user program can access a specific hardware
device or function. For example, the device
file /dev/hda is traditionally used to repre-
sent the first IDE drive in the system. The name
hda corresponds to both a major and a minor
number, which is used by the kernel to deter-
mine what hardware device to talk to. Cur-
rently a very wide range of names that match
up to different major and minor numbers have
been defined.

All major and minor numbers are assigned
a name that matches up with a type of
device. This allocation is done by The
Linux Assigned Names And Numbers Au-
thority (LANANA)[4] and the current de-
vice list can be always be found on their
web site athttp://www.lanana.org/
docs/device-list/devices.txt

264 • Linux Symposium

As Linux gains support for new kinds of de-
vices, they need to be assigned a major and mi-
nor number range in order for the user to be
able to access them through the/dev direc-
tory (one alternative to this is to provide ac-
cess through a filesystem [3]). In the kernel
versions 2.4 and earlier, the valid range of ma-
jor numbers was 1-255 and minor numbers was
1-255. Because of this limited range, a freeze
was placed on allocating new major and mi-
nor numbers during the 2.3 development cycle.
This freeze has since been lifted, and the 2.6
kernel should see an increase in the range of
major and minor numbers available for use.

2 Problems with current scheme

2.1 What /dev entry is which device

When the kernel finds a new piece of hard-
ware, it typically assigns the next major/minor
pair for that kind of hardware to the device.
So, on boot, the first USB printer found would
be assigned the major number 180 and mi-
nor number 0 which is referenced in/dev as
/dev/usb/lp0 . The second USB printer
would be assigned major number 180 and mi-
nor number 1 which is referenced in/dev
as /dev/usb/lp1 . If the user rearranges
the USB topology, perhaps adding a USB hub
in order to support more USB devices in the
system, the USB probing order of the print-
ers might change the next time the computer
is booted, reversing the assignment of the dif-
ferent minor number to the two printers.

This same situation holds true for almost any
kind of device that can be removed or added
while the computer is powered up. With the
advent of PCI hotplug enabled systems, and
hot-pluggable busses like IEEE1394, USB, and
CardBus, almost all devices have this problem.

With the advent of thesysfs filesystem

in the 2.5 kernel, the problem of deter-
mining which device minor is assigned to
which physical device is now much eas-
ier to determine. For a system with two
different USB printers plugged into it, the
sysfs /sys/class/usb directory tree can
look like Figure 1. Within the individ-
ual USB device directories pointed to by the
lp0/device and lp1/device symbolic
links, a lot of USB specific information can be
determined, such as the manufacturer of the de-
vice, and the (hopefully unique) serial number.

As can be seen by the serial files in Fig-
ure 1, the /dev/usb/lp0 device file is
associated with the USB printer with se-
rial number HXOLL0012202323480 , and
the /dev/usb/lp1 device file is associ-
ated with the USB printer with serial number
W09090207101241330 .

If these printers are moved around, by placing
them both behind a USB hub, they might get
renamed, as they are probed in a different order
on startup.

In Figure 2, /dev/usb/lp0 is assigned
to the USB printer with the serial number
W09090207101241330 due to this different
probing order.

sysfs now enables a user to determine which
device has been assigned by the kernel to
which device file. This is a very power-
ful association that has not been previously
easily available. However, a user gener-
ally does not care that/dev/usb/lp0 and
/dev/usb/lp1 are now reversed and should
be changed in some configuration file some-
where, they just want to always be able to print
to the proper printer, no matter where it is in
the USB device tree.

Linux Symposium 2003 • 265

/sys/class/usb/
|-- lp0
| |-- dev
| |-- device -> ../../../devices/pci0/00:09.0/usb1/1-1/1-1:0
| ‘-- driver -> ../../../bus/usb/drivers/usblp
‘-- lp1

|-- dev
|-- device -> ../../../devices/pci0/00:0d.0/usb3/3-1/3-1:0
‘-- driver -> ../../../bus/usb/drivers/usblp

$ cat /sys/class/usb/lp0/device/serial
HXOLL0012202323480
$ cat /sys/class/usb/lp1/device/serial
W09090207101241330

Figure 1: Two USB printers plugged into different USB busses

$ tree /sys/class/usb/
/sys/class/usb/
|-- lp0
| |-- dev
| |-- device -> ../../../devices/pci0/00:09.0/usb1/1-1/1-1.1/1-1.1:0
| ‘-- driver -> ../../../bus/usb/drivers/usblp
‘-- lp1

|-- dev
|-- device -> ../../../devices/pci0/00:09.0/usb1/1-1/1-1.4/1-1.4:0
‘-- driver -> ../../../bus/usb/drivers/usblp

$ cat /sys/class/usb/lp0/device/serial
W09090207101241330
$ cat /sys/class/usb/lp1/device/serial
HXOLL0012202323480

Figure 2: Same USB printers plugged into a USB hub

2.2 Not enough numbers

The current range of allowed major and minor
numbers is 8 bits (0-255). Currently there are
very few major numbers left for new charac-
ter devices, and about half the number of ma-
jor numbers available for block devices (block
and character devices can use the same num-
bers, but the kernel treats them separately, giv-
ing the whole range for both types of devices.)

This seems like a lot of free numbers, but there
are users who want to use a very large number
of disks all at the same time, for which the 8 bit
scheme is too small. A common goal of some
companies is to connect about 4,000 disks to
a single system. For every disk, the kernel re-
serves 16 minor numbers, due to the possibility
of there being up to 16 partitions on every disk.
So 4,000 disks would require 64,000 different
device files, needing at least 250 major num-

266 • Linux Symposium

bers to handle all of them. This would work
in the 8 bit scheme, as they all would fit, but,
the majority of the current major numbers are
already reserved. The disk subsystem can not
just steal major numbers from other subsys-
tems very easily. And if it did so, userspace
would have to know which previously reserved
major numbers are now being used by the SCSI
disk subsystem.

Because of this limitation, a lot of people are
pushing for an increase in the size of the major
and minor number range, which would be re-
quired to be able to support more than 4,000
disks (some users talk of connecting 10,000
disks at once.) It looks like this work will go
into the 2.6 kernel; however, the large problem
remains of how to notify userspace which ma-
jor and minor numbers are being used.

Even if the major number range is increased,
the requirement of reserving major number
ranges for different types of subsystems is still
present. It still requires an external naming
authority, and possibly we could run out of
ranges sometime in the far future. If the kernel
were to switch to a dynamic method of allocat-
ing major and minor numbers, for only the de-
vices that were currently connected to the sys-
tem, this authority would no longer be needed,
and the range of numbers would never run out.
The biggest problem with dynamic allocation
is again, userspace has no idea which devices
are assigned to which major and minor num-
bers.

A few kernel subsystems currently do allocate
minor numbers dynamically. The USB to Se-
rial subsystem has been doing this since the 2.2
kernel series, with great success. The biggest
problem still is the user does not know what de-
vice is assigned to what number, and has to rely
on looking in a kernel log to make that deter-
mination. Withsysfs in the 2.5 kernel, this
is much easier.

2.3 /dev is too big

Not all device files in the/dev directory of
most distributions match up to a physical de-
vice that is currently connected to the computer
at that time. Instead, the/dev directory is cre-
ated when the operating system is initialized
on the machine, populating the/dev directory
with all known possible names. On a machine
running Red Hat 9, the/dev directory holds
over 18 thousand different entries. This large
number of different entries soon becomes very
unwieldy for users to try to determine exactly
what devices are currently present.

Because of the large numbers of device files
in the /dev directory, a number of operating
systems have moved over to having the ker-
nel itself manage the/dev directory, as the
kernel always knows exactly what devices are
present in the system. It does this by creating
a ram based filesystem calleddevfs . Linux
also has this option, and it has become popular
over time with a number of different distribu-
tions (the Gentoo distribution being one of the
more notable ones.)

2.4 devfs

A number of other Unix-like operating systems
have solved a lot of the previously mentioned
problems by using a kernel-baseddevfs
filesystem. Linux also has adevfs filesystem,
and for a number of people, this solves their
immediate needs. However, the Linux-based
devfs implementation still has a number of
problems unsolved.

devfs does only show exactly what devices
are currently in the system at any point in time,
solving the “/dev is too big” issue. How-
ever, the names used bydevfs are not the
names that the LANANA authority has issued.
Because of this, switching between adevfs
system, and a static/dev system is a bit dif-

Linux Symposium 2003 • 267

ficult, due to the number of different config-
uration files that need to be modified. The
devfs authors have tried to address this prob-
lem and have provided some compatibility lay-
ers to emulate the/dev names.

Even with devfs running in compatibility
mode, the Linux kernel is imposing a set nam-
ing policy on userspace. It is saying that the
first IDE drive is going to be called/dev/hda
or /dev/ide/hd/c0b0t0u0 and there is
nothing that a user can do about this. Gener-
ally, the Linux kernel developers do not like
forcing any policies on userspace, when it can
be helped. This naming policy should be
moved out of the kernel, so that the kernel
driver developers can focus not on naming ar-
guments (of which thedevfs naming argu-
ments consumed many man years of time). In
short, the kernel should not care what a user
wants to call a device, but ifdevfs is used,
this is not possible.

devfs also does not allow devices to be bound
to major and minor numbers dynamically. The
current devfs implementation still uses the
same major and minor numbers that are as-
signed by LANANA.devfs can be modified
to do dynamic allocation; however, no one has
done so yet.

devfs also forces all of the device names and
the naming database into kernel memory. Ker-
nel memory can not be swapped out, and is
always resident. For very large amounts of
devices (like the previously mentioned 4,000
disks), the overhead of keeping all of the device
names in kernel memory is not unsubstantial.
During some testing of a wider major num-
ber range, one developer ran into memory star-
vation issues on a 32 bit Intel processor, just
with a static/dev system. Add the overhead
of 4,000 different disk names and structures to
manage those names, and even less memory
would be available for user programs to use.

3 udev ’s goals

So, in light of all of the previously mentioned
problems, theudev project was started. Its
goals are the following:

• Run in userspace

• Create a dynamic/dev .

• Provide consistent device naming, if
wanted.

• Provide a userspace API to access info
about current system devices.

The first item, “run in userspace,” is
easily done by harnessing the fact that
/sbin/hotplug generates an event for
every device that is added or removed from the
system, combined with the ability ofsysfs to
show all needed information about all devices.

The rest of the goals enable theudev project
to be split into three separate subsystems:

1. namedev – handles all device naming

2. libsysfs – a standard library for ac-
cessing device information on the system.

3. udev – dynamic replacement for/dev

3.1 namedev

Due to the need for different naming schemes
for devices, the device naming portion of udev
has been moved into its own subsystem. This
was done to move the naming policy deci-
sion out of the udev binary, allowing plug-
gable naming schemes to be developed by dif-
ferent groups. This device naming subsys-
tem, namedev, presents a standard interface
that udev can call to name a specific device.

268 • Linux Symposium

With the initial releases ofudev , the namedev
logic is still provided in a few source files
that get linked into theudev binary. There
is currently only one naming scheme imple-
mented, the one specified by LANANA[4].
This scheme is quite simple, as generally the
sysfs representation of the device uses the same
name, and will be suitable for the majority of
current Linux users.

As the current kerneldevfs provides a com-
peting naming schema from LANANA, there
has been some interest in providing a module
that contains this, but this is currently unavail-
able due to lack of interest by the primary de-
velopers.

Part of the goal for theudev project is to pro-
vide a way for users to name devices based
on a set of policies. The current version of
namedev provides the user with a five step
sequence for determining the name of a given
device. These steps are consulted in order, and
if the device’s name can be determined at any
step, that name is used. The existing steps are
as follows:

1. label or serial number

2. bus device number

3. topology on bus

4. replace name

5. kernel name

In the first step, the device that is added to the
system is checked to see if it has a unique iden-
tifier, based on that type of device. For ex-
ample, on USB devices, the USB serial num-
ber is checked; for SCSI devices, the UUID is
checked; for block devices, the filesystem label
is checked. If this matches a identifier provided
by the user (in a configuration file), the result-
ing name (again specified in the configuration
file) is used.

The second step checks on the device’s bus
number. For a lot of busses, this number gen-
erally does not change over time, and all bus
numbers are guaranteed to be unique at any
one point in time in the system. A good ex-
ample of this is PCI bus numbers, which rarely
change on the majority of systems (however,
BIOS upgrades, or hotplug PCI controllers, can
renumber the PCI bus number the next time the
machine is booted.) Again, if the bus number
matches an identifier provided by the user, the
resulting name is assigned to the device.

The third step checks the position of the device
on the bus. For example, a USB device can be
described as residing in the 3rd hub port of the
hub plugged into the first port on the root hub.
This topology will not change, unless the user
physically moves the devices around, and is in-
dependent of any bus numbering changes that
might occur between reboots of a machine. If
the topology position on the bus matches the
position provided by the user, the requested
name is assigned to the device.

The fourth step is a simple string replacement.
If the kernel name for a device matches the
name specified here, the requested new name
will be used in its place. This is useful for
devices that users always know will have the
same kernel name, but wish to name something
different.

The fifth step is the catch-all step. If none of
the previous steps have provided a name for
this device, the default kernel name will be
used for this device. For the majority of de-
vices in a system, this is the rule that will be
used, as it matches the way devices are named
on a Linux system withoutdevfs or udev .

Figure 3 shows an examplenamedev con-
figuration file. This configuration file shows
how the four different ways of overriding the
default kernel naming scheme can be changed.
The first two entries show how to specify a se-

Linux Symposium 2003 • 269

USB Epson printer to be called lp_epson
LABEL, BUS="usb", serial="HXOLL0012202323480", NAME="lp_epson"

USB HP printer to be called lp_hp,
LABEL, BUS="usb", serial="W09090207101241330", NAME="lp_hp"

sound card with PCI bus id 00:0b.0 to be the first sound card
NUMBER, BUS="pci", id="00:0b.0", NAME="dsp"

sound card with PCI bus id 00:07.1 to be the second sound card
NUMBER, BUS="pci", id="00:07.1", NAME="dsp1"

USB mouse plugged into the third port of the first hub to be
called mouse0
TOPOLOGY, BUS="usb", place="1.3", NAME="mouse0"

USB tablet plugged into the second port of the second hub to be
called mouse1
TOPOLOGY, BUS="usb", place="2.2", NAME="mouse1"

ttyUSB1 should always be called visor
REPLACE, KERNEL="ttyUSB1", NAME="visor"

Figure 3: Examplenamedev configuration file

rial number of a device to control what that de-
vice should be named. The third and fourth
entries show how to override the bus probing
order and name a device based on the specific
bus id. The fifth and sixth entries show how the
USB topology can be used to specify a device
name, and the seventh entry shows how to do a
simple name substitution.

3.2 libsysfs

There is a need for a common API to access de-
vice information insysfs by a number of var-
ied programs, not just theudev project. The
device naming subsystem and theudev sub-
system need to query a wide range of device
information from asysfs represented device.
Instead of duplicating this logic around in dif-
ferent projects, splitting this logic ofsysfs
calls into a separate library that will sit on top
of sysfs makes more sense.sysfs repre-
sentations of different devices are not standard
(PCI devices have different attributes from

USB devices, etc.) so this is another reason
for creating a common and standard library in-
terface for querying device information.

Right now the currentudev codebase is us-
ing an initial version oflibsysfs , and the
libsysfs codebase is under active develop-
ment.

3.3 udev

The udev program will be responsible
for talking to both the namedev and
libsysfs libraries to accomplish the de-
vice naming policy that has been speci-
fied. The udev program is run whenever
/sbin/hotplug is called by the kernel. It
does this by adding a symlink to itself in
the/etc/hotplug.d/default directory,
which is searched by the/sbin/hotplug
multiplexer script.

The /sbin/hotplug invocation by the ker-

270 • Linux Symposium

nel exports a lot of device specific informa-
tion on what action just happened (add or re-
move), what device type the action took place
for (USB, PCI, etc.), and what device in the
sysfs tree did the action.udev takes this
information, callsnamedev to determine the
name it should give for this device (or the name
that has already been given to this device if it is
a remove event). If this is a new device that has
been added,udev useslibsysfs to deter-
mine the major and minor number that should
be used for the device file for this device, and
then creates the device file in the/dev di-
rectory with the proper name and major/minor
number. If this is a device that has been re-
moved, then the device file in the/dev direc-
tory that had previously been created for this
device will be removed.

4 Enhancements

There are a number of different enhancements
that different users have asked for, that can be
added to the existingudev implementation.

A lot of userspace programs want to be notified
when a new device has been added or removed
from the system. Gnome and KDE both want
to add a new icon if a disk has been added,
or possibly launch a sync program if a USB
Palm device has been attached. The D-BUS
project[1] has been created to help provide a
simple way for applications to talk to one an-
other using messages. It has been proposed
that theudev program create a D-BUS mes-
sage after it has created or removed a device
file, so that any listening applications can act
upon this event.

Currently,namedev uses a very simple con-
figuration file, creating a simple ram based
database that it uses to store all current device
information, and device naming rules. It has
been proposed that this database (if it can even

really be called such a thing), be moved to a
real, backing-store type database, in order to
store a persistent view of the system, or to pro-
vide a more complex naming scheme forudev
to use.

5 Thanks

The author would like to thank Daniel Stekloff
of IBM who has helped shape the design of
udev in many ways. Without his persever-
ance,udev might not even be working. He
also provided the initial design documents for
how udev could be split up into different
pieces, allowing pluggable naming schemes
and has been instrumental in the development
of libsysfs . Also, without Pat Mochel’s
sysfs and driver model core,udev would
not even have been possible to implement. The
author is indebted to him for undertaking what
most thought as an impossible task, and for al-
lowing others to easily build on his common
framework, allowing all users to see the “web
woven by a spider on drugs”[5] that the kernel
keeps track of.

6 Legal Statement

IBM is a registered trademark of International Busi-
ness Machines in the United States and/or other
countries.

Linux is a registered trademark of Linus Torvalds

UNIX is a registered trademark of The Open Group
in the United States and other countries.

Intel is a registered trademark of Intel Corporation
in the United States and/or other countries.

Other company, product, and service names may be
trademarks or service marks of others.

Linux Symposium 2003 • 271

References

[1] D-BUS project.http://www.
freedesktop.org/software/dbus/ .

[2] Linux Filesystem Hierarchy Standard.http:
//www.pathname.com/fhs/2.2/ .

[3] Greg Kroah-Hartman. Putting a filesystem
into a device driver. InLinux.conf.au, Perth,
Australia, January 2003.

[4] The Linux Assigned Names And Numbers
Authority. http://www.lanana.org/ .

[5] Linux Weekly News.
http://lwn.net/Articles/31185/ .

272 • Linux Symposium

